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I. Introduction and overview of project 

As outdoor temperatures plummet, household pipes can be exposed to extremely cold 

conditions. This is experienced commonly by persons who are away from their home for 

extended periods during winter time such as in unattended vacation homes.  Lower 

temperatures can cause the water in the pipes to freeze. This results in an increase in the 

pressure in the pipes, which can cause them to burst. The Michigan Committee for Severe 

Weather Awareness estimates that a quarter-million homes in Michigan are damaged each 

winter due to frozen water pipes, while an eighth-inch crack in a pipe can cause up to 250 

gallons of water to leak a day1. This can lead to severe property damage. According to ACE 

Home Services, such a water leak can cost anywhere from $5,000- $50,000, plus plumbing costs 

to repair the pipes2. 

 

One common workaround to this problem is to keep the house heated sufficiently to prevent 

the pipes from being exposed to very low temperatures. The homeowner must manually 

monitor this situation by increasing the temperature enough to prevent the pipes from 

freezing, but not too high for extended periods, as this becomes energy intensive and 

expensive. Another common solution is to drain all the pipes in the house. However, this 

approach is not a trivial task and requires professional plumbers to participate. 

 

There are currently limited viable commercial solutions to easily monitor the temperature of 

the water pipes. However, even with these solutions, the user is only informed of the 

temperature and must then either manually increase the temperature of the home or manually 

drain the pipes.  Thus, we developed a novel commercial product to solve this issue, while 

addressing the need to drain the pipes.  

 

According to “The Freezing and Blocking of Water Pipes”, the water in pipes are subjected to 

the risk of freezing when the temperature is between -4°C and -6°C. Also, flow rate could be 

used as a gauge for the risk of pipes bursting, however there is no accurate quantitative 

measure for this approach3. Thus, our project stemmed from their findings, where we 

implemented a temperature sensor at the specified threshold.  

 

Our solution actively monitors the pipe temperature, reporting such to the user via a web 

application interface.  If the pipes are at risk of freezing, the system will automatically drain the 
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pipes. The drainage will occur in the configured time setup by the user, which was a default to 5 

seconds. The pipe status to indicate whether the pipes are operating normally or is drained is 

displayed on the packaged system and on the web application. The user can also command the 

system to drain or refill the pipes. The web application interface also plots the temperature 

recordings of the pipes to the user. Our solution overall provides an automatic and guaranteed 

solution that the pipes will never burst. 

 

For the design expo, we constructed a pipe system to model that of a household pipe system. 

We demonstrated all functionality of our system. Since we could not achieve the situation 

where the pipes were at risk of freezing, we simulated such by placing the temperature sensor 

in ice water and reducing the threshold to 6°C to show the drainage process. We further 

showed that the pipes can be refilled by the user command on the web interface. The 

temperature and pipe status were also shown updating on the displays of the packaged product 

and the web application. We also showed that our system plots the temperature of the pipes. 

Finally, we showed that the Wi-Fi of our system has implemented SoftAP, in which the user can 

enter their SSID and password to connect the system to the internet on startup.   

 

II. Description of project 

 

The eventual goal of this project is to present a solution to the problem of water freezing in the 

plumbing system in houses during extremely cold days. More specifically, we aim to develop a 

commercial automatic pipe drainage system which can be relatively easy to install and work 

with existing pipe structures at the user’s house. 

 

The system combines sensors and traditional methodology for pipe drainage. The system 

involves several devices that will be installed on some specific segments of the pipes across the 

house. Every device serves not only as a sensor node that can measure local temperature and 

evaluate freezing risk, but also as the controller to some local mechanical components (valves) 

that will remotely collaborate to drain the pipes.  

 

Traditional plumbing has already developed a methodology to drain a pipe. The process can be 

summarized in the following steps: 

1. Close the main source of incoming water 

2. Open all the terminals along the pipes (e.g. taps, faucets…) 

3. Connect an air compressor to the faucet right next to the main entrance of water 
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4. Pump air into the network and push water out 

 

Realizing that the whole process is a sequence of simple mechanical operations happening on 

different locations of the pipes, we believe that we can use an embedded system to do it 

instead. This would have been typically done by a plumber. However, it is inconvenient to 

request plumbing services every time the user would like to drain his pipes.  

 

Existing research has shown that water in the pipes are subject to the risk of freezing between  

-4°C and -6°C3. Given the isolation of water in the plumbing system, temperature and flow rate 

are the most important factors that determines the risk of freezing. Unfortunately, the research 

points out that there is no good quantitative analysis on how flow rate affect water freezing. 

 

Given the supporting evidence from the existing plumbing practice and academic research on 

freezing risk evaluation, we are confident that our system can achieve our goal if we can 

coordinate the sensors and the mechanical components to work successfully. 

 

In order to make the product marketable, the product should be relatively small and light 

enough to be installed onto the pipe structure. Our packaged product was of 16cm x 10cm x 8.5 

cm and weighed 0.63lbs. This was small enough to be secured onto to the pipes. However, this 

could have been reduced if there was time to make a second optimized version of the PCB. 

Another design constraint is that the cost of the system should be low enough for the user to 

be persuaded to purchase this product, since there would be an unavoidable plumbing cost 

incurred as well. Our product costs $297.96. This includes the price of all expensive components 

such as the valves and the air compressor. While this cost is quite high for such a system, it can 

be justified since it is still much less than the incurred costs of ruptured water pipes ($5,000- 

$50,0002). Next, the system should be accurate and robust, to ensure that the pipes are only 

drained if they are at risk of bursting. Our system has a resolution of 0.5°C, which is sufficient 

for this application. Additionally, our state machine used ensures that the system will always 

operate in a known safe state, thus preventing it from malfunctioning. Also, our system has a 

much faster reaction time than the rate that temperature would change. This ensures that the 

risk situation would be detected and dealt with before the pipe ruptures. Next, our solution 

should be user-friendly as it targets typical homeowners. This was achieved by designing a 

simple web application interface displaying only the necessary information and commands for 

the user. The packaged system also displayed such information.  Finally, from a project point of 
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view, we were provided a budget of $1000 and time frame of roughly 11 weeks.  Our project 

was successfully completed within this time and kept within the budget. 

 

Before delving into the functional requirements of our system, it needs to satisfy the following 

baseline requirements: 

1. It must not interfere with the normal water flow in common case 

2. It must not add any unsafe material to the water 

3. It must not cause leakage in common case 

4. It doesn’t affect the structure of existing pipes 

 

Given that our system is supposed to work in the wall, our system has two constraints: 

1. It must regularly report its status to the user 

2. It must interact with user via remote control 

 

In order to make our system marketable, we want it to have the following properties: 

1. It can be implemented with a small cost for the whole system 

2. It can be easily installed 

3. It can be configured to adapt to house with different sizes and pipe structures 

 

There are also some important legal constraints: 

1. The modification of the plumbing system must meet the Uniform Plumbing Code 

2. The system must be installed and maintained by plumbers with the license 

However, due to the limitation of the scope of this project. We cannot spend effort in 

addressing with these legal constraints. 

 

Based on these constraints, we have categorized and defined a set of functional criterions that 

our system is supposed to achieve. 

 

 

 

 

 

 

 

 



 

Smart Water Pipes EECS 473 
Fall 2018 

 

5 
 

Table 1: Design Requirements 

Category Design Criteria Importance 
Will/ 

Expect/ 
Stretch 

Achieved? Comment 

Sy
st

e
m

 

Drainage is triggered when any temperature 
is less than -4°C. 

Fundamental Will ✅ - 

The system never enters an unsafe state. Fundamental Will ✅ - 

Valves does not cause any leakage Fundamental Will 
✅ 

(80%) 

Caused by bad valve 
quality 

Drainage takes a constant time, which can 
be configured by the user through the 

phone. 
Important Will ✅ - 

There is a defined safe emergency mode 
when power and/or Wi-Fi is off. 

Important Will ✅ 

Redesigned so this 
was no longer 

necessary. 

W
eb

 A
p

p
lic

at
io

n
 

Updates will take place every 10s when the 
user connects to web server on the mobile 

device. 
Important Expect ✅ - 

Push notifications occur just before pipes are 
drained. 

Optional Stretch  

This was not 
prioritized as a stretch 

goal 

Interface the app and the web server with a 
Nest Learning Thermostat 

Optional Stretch  
Did not obtain Nest 

Thermostat 

Record and plot temperature Optional Stretch ✅ Added during project 

C
o

m
m

u
n

ic
at

io
n

 Main PCB sends data to web server when at 
a 10s interval when user is online or if the 

user is at risk. 
Fundamental Will ✅ 

Our system streams 
data to web server 

Communication occurs between main and 
node PCBs at 5s intervals. 

Important Expect ✅ - 

The Wi-Fi can be easily configured. Important Stretch ✅ - 
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The following diagram is an overview of the architecture of our system’s circuit. 

 

Figure 1: System Architecture 

Our system involves more than one devices. One of them serves as the unique master device 

and all the other ones are node devices. Typically, there should be one node device for ever 

floor of the house. Although master and node devices share the same circuit and PCB for 

simplicity, they only use a subset of all the peripherals on the board.  

The master device controls one motorized valve at the main water source where water enters 

the house’s pipes at the basement. It also controls an air compressor through a power relay 

module which turns on the air compressor given an active high signal, and a normally off 

solenoid valve connecting the air compressor to the pipe.  

Each node device controls two normally off solenoid valve at the terminal of pipes on each 

floor.  
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Figure 2 below shows how the master device (main PCB) and the node device is installed on an 

existing pipe system. 

 
Figure 2: System Installation Layout 

All the mechanical components collaborate during the drainage process, which is summarized 

in figure 3.  

 

Figure 3: Drainage Process 
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A recover process that allows the system to recover the pipes to its normal state to start supply 

water is very similar to the drainage process. 

A temperature sensor present on each device, collects temperature data across the locations 

where the devices are installed. All the temperature data are sent to the master device to 

evaluate the risk of freezing.  

Device to device communication is handled by XBee modules. Additionally, the master device 

has a Wi-Fi module to connect to an external web server to indicate the state of the pipe 

system. It also allows the user to monitor the temperature and to it monitors to manually issue 

commands through the web application interface. We also gave the user the ability to configure 

the time taken for the pipes to drain. This can be initially setup and stored for all further 

drainages, or the user can also change this at any time on the web application. Furthermore, 

the user can view the history of the temperature of the pipes.  This is shown in figure 4 below. 

 

Figure 4: Web Application Interface 



 

Smart Water Pipes EECS 473 
Fall 2018 

 

9 
 

In order to provide a complete and simple solution, we also allow the user to configure the Wi-

Fi SSID and password. This is done using the SoftAP mode of our Wi-Fi module. On startup of 

the system, the user will enter his Wi-Fi credentials in the interface shown in figure 5. 

 

Figure 5: Wi-Fi Configuration Interface 

Every device also includes an OLED display which displays the current status of the system and 

local temperature measurement. An LED is added to each device as indicator of device to 

device communication (e.g. LED on means the device is “seeing” others). These peripherals 

provide necessary information for the user to understand what the system is doing. A reset 

button is placed on each board to restart the program on the board. After packaging our system 

in the box, only the OLED, LED, reset button and some holes for wires (for the mechanical 

components) are exposed to the user, as shown in figure 7 below.  

 

Figure 6: Packaged Product (Master Node) 



 

Smart Water Pipes EECS 473 
Fall 2018 

 

10 
 

III. Milestones, schedule, and budget 

Milestones: 

Our group successfully completed and demonstrated where necessary, the initial milestones. 

These are listed below. 

 

Milestone 1: 10/18/2018 

● Show temperature sensor data can be displayed with development board 

● Valves can be controlled individually with development board 

● Establish multi-node XBee communication 

● Show rough draft schematic of PCBs  

Milestone 2: 11/08/2018 

App:  

• Show the pipe status and temperature on the web app  

• Show the current configuration on the web app 

• Allow controls for user to change configurations on web server 

System:  

• Show overall pipe drainage process through dev board 

• Respond to power outage and Wi-Fi outage on dev board 

• Display status on LCD with dev board 

Show final layout of PCBs: 

• Show design of LED blink when micro has code 

• Show all sensors and components layout together on PCB 

• Show design of power circuits 

Packaging: 

• Draft of packaging for Design Expo 

• Pipe structure created for demo  

 

Schedule: 

Our group was able to complete all items in our schedule by the design expo deadline. 

However, we did have a few minor issues along the way. Initially, we took longer than expected 

to select and receive our microprocessor. After such, there was a delay in getting our 

development environment running. This resulted in a delaying of our first major task, which 

was prototyping all peripherals. However, after setup, we were able to complete this step 

faster than planned and stuck to our schedule. Communication through XBee and Wi-Fi posed 

the most issues and took longer than expected. Soldering also took longer than planned, mostly 
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due to issues faced with soldering the microprocessor. Soldering and communication tasks 

were done concurrently and were achieved eventually a bit delayed on schedule.  The final task 

was system integration, final testing and improvements. We initially scheduled one and a half 

weeks for this. This was started a bit later due to the previous delays. However, was completed 

within the timeframe.  

 

Budget: 

Our group spend a total of $954.41, which was within our $1000 budget. Our proposal 

budgeted $661.42, which did not include some components such as the microcontroller and 

development board (which were not confirmed at that time) as well as passives and 

miscellaneous required items for the demo. Due to minor project changes, we had to also make 

additional purchases outside of the above, such as two motorized valves and a rechargeable li-

ion battery. The PCB also costed more than initially budgeted. Overall, we were able to stick 

within the allocated budget. 
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IV. Lessons learned 

Overall, our system operation went well. Our finite state machine designed was robust and 

thus, all our peripherals worked as expected, resulting in smooth system operation.  

 

Our packaging was not as good as we initially planned. This item was not prioritized sufficiently 

and thus, we ran into difficulties with this nearing the end of the project. As a result, our final 

casing and overall look of our final demo setup, had a lot of room for improvement in our 

opinion.  

 

If we could send a short memo back in time to advise our group, we would simply say “Take 

more risks”. During our project, we took many precautionary steps. For example, with the PCB 

design, our design included components mainly on one side of the board, and included many 

additionally pins, in case we needed such. However, this resulted in a larger than necessary 

PCB. Similarly, we opted for a safer off the shelf solution for our battery charging system. 

However, ideally if we had more time, we could have designed our own.  

 

Our group learned a wide range of technical material. Firstly, since we used a new 

microcontroller, we learned about a new development environment. As such, we are confident 

that we can now easier setup and use any given microcontroller, provided that the required 

documentation is available. Next, we gained a deeper understanding with XBee communication 

and Wi-Fi communication. Since our project implemented FreeRTOS, we gained a deeper 

understanding managing more tasks, as well as how to develop and maintain a good software 

interface. We also gained experience with building the web server and designing and building 

the web application. Finally, other important technical skills gained was debugging, due to the 

number of small issues faced during implementation. We also gained real-world engineering 

skills in the sense that we observed a problem, identified the current environment and issues, 

studied the relevant research done and engineered an applicable and efficient solution.  
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V. Contributions of each member of team 

Table 2: Team Contributions 

Team Member Contribution Effort 

Rahul 

Gangwani 

Rahul majorly developed and tested the temperature sensor. He 

was also solely responsible for the PCB design. He also 

participated in unit testing of the peripherals. He also played a 

large role in the packaging. Rahul also contributed greatly to the 

poster and documentation.  

20% 

Devesha 

Tewari 

Devesha majorly developed and tested the OLED display and 

worked aided with the temperature sensor, Wi-Fi and web 

application. She soldered and tested the node PCB. She also 

participated in unit and system testing. She also worked a lot on 

the system integration and setup for the design expo. Devesha 

also contributed greatly to the poster and documentation. 

20% 

Chunan Ye Chunan majorly developed and tested the Xbee and aided on the 

Wi-Fi. He also played the largest role in the algorithm 

development of the system with the team. He also constructed 

the mechanical pipe system for demo. He soldered and tested 

the main PCB. He also participated in unit and system testing. He 

also worked a lot on the system integration and setup for the 

design expo. 

25% 

Yutian Chen Yutian majorly developed and tested the Wi-Fi. He also 

developed the web server side and web application interface. He 

also participated in unit and system testing. He also worked a lot 

on the system integration and setup for the design expo. Yutian 

also was in charge of purchasing and managing of the budget. 

20% 

Carl Wu Carl aided with the development of the temperature sensor. He 

also did the packaging design and was responsible for the 

printing of the package.  

15% 
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VI. Cost of Manufacture 

 

By using CircuitHub, we were able to generate a quote based on the board and assembly: 

Table 3: PCB Assembly Quote 

 
 

By ordering more boards at a time, we can effectively reduce the cost of the board and 

assembly. The reason for these prices are due to the fact that the cost of assembly is 

considered, and that the manufacturing process uses a pick and place machine to place 

components, so more of the same components are ordered to consider for attrition (parts that 

may be damaged by the machine).  

 

The highlighted section of the spreadsheet shows a reasonable starting number of boards that 

we will need for our system. This was based on the fact that each household will have at least 4 

PCBs (one for the main valve, and 3 for the node valves, one per floor). The total price per 

board of ordering 2000 boards with assembly is $59.38, which fits reasonably given the cost of 

the prototyped PCB and components without assembly was $20.84.  
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VII. Parts 

Table 4 and table 5 below shows a list of the parts ordered that were either used in the final 

design or not included in the final design. These costs do not consider shipping. 

 
Table 4: List of Parts Used in Final Design 
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Table 5: List of Additional Unused Parts 

 
 

 

Table 6 below shows the total cost for the two populated PCBs for the master and node device. 

 
Table 6: List of PCB Components Used 
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VIII. References and citations 

Interface Code: 

The main header files written for our project are shown below.  

1. /*Temperature.h*/   
2. #ifndef TEMPERATURE_H_   
3. #define TEMPERATURE_H_   
4.    
5. #include "stm32l4xx_hal.h"   
6.    
7. #define ONEWIRE_CMD_SKIPROM             0xCC   
8. #define ONEWIRE_CMD_RSCRATCHPAD         0xBE   
9. #define ONEWIRE_CMD_WSCRATCHPAD         0x4E   
10. #define ONEWIRE_CMD_CPYSCRATCHPAD       0x48   
11. #define TEMP_CMD_CONVERTTEMP            0x44    /* Convert temperature */   
12.    
13. #define HIGH 1   
14. #define LOW 0   
15.    
16. typedef enum Temp_Command   
17. {   
18.     READ_TEMP, SET_RESOLUTION, CONVERT   
19. }   
20. Command;   
21.    
22. typedef struct Temp_Struct   
23. {   
24.     GPIO_TypeDef* GPIOx;           /*!< GPIOx port to be used for I/O functions */   
25.     uint16_t GPIO_Pin;             /*!< GPIO Pin to be used for I/O functions */   
26. }   
27. Temperature;   
28.    
29.    
30. /* HIGH LEVEL FUNCTIONS */   
31. void initTemp(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, GPIO_TypeDef* port, uint1

6_t data_pin); // Initialize the instance with a GPIO pin   
32. float getTemperature(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst); // Read temperatu

re data from the sensor   
33. double convertCelsius(double fahrenheit_in); // Convert Fahrenheit to Cenlsius   
34. double convertFahrenheit(double celsius_in); // Convert Cenlsius to Fahrenheit   
35.    
36.    
37. /*LOW LEVEL FUNCTIONS */   
38.    
39. //Setup pin to use OneWire protocol through temp Init   
40. void OneWire_Init(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, GPIO_TypeDef* GPIOx, 

uint16_t GPIO_Pin_in);   
41.    
42. //Step 1. Initialization - Send pulse and wait for response, if good move on.    
43. uint8_t OneWire_Reset(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);   
44.    
45. //Step 2. ROM Command -> Skip ROM    
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46. void Temperature_SendCommand(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, Command cm
d);   

47.    
48. //Set R0 and R1 to 0 for 9 bit resolution   
49. uint8_t Temperature_SetResolution(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, const

 uint8_t resolution);   
50.    
51. ////Write Logic    
52. void OneWire_WriteByte(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, uint8_t byte);   
53. void OneWire_WriteBit(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, uint8_t bit);   
54.    
55. ////Read Logic   
56. uint8_t OneWire_ReadBit(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);   
57. uint8_t OneWire_ReadByte(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);   
58.    
59. //Temperature convert and read result logic   
60. void Temperature_Convert(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);   
61. float Temperature_Read(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);  //Skip ROM sta

rt temperature conversion   
62.    
63. //Invalid command was entered   
64. void Invalid_Cmd();   
65.    
66. //OneWire Pin Manipulations   
67. void SET_ONEWIRE_LOW(Temperature* TempPin);   
68. void SET_ONEWIRE_AS_OUTPUT(Temperature* TempPin);   
69. void SET_ONEWIRE_AS_INPUT(Temperature* TempPin);   
70. void SET_ONEWIRE_DELAY(TIM_HandleTypeDef* Tim_Inst, uint32_t time_us);   
71. #endif /* TEMPERATURE_H_ */   

1. /*Valve.h*/   
2.    
3. #ifndef VALVE_H_   
4. #define VALVE_H_   
5.    
6. #include "stm32l4xx_hal.h"   
7. #define HIGH 1   
8. #define LOW 0   
9.    
10. //========= Solenoid valve. One-pin control   
11.    
12. // Solenoid valve status   
13. typedef enum valveSoleStatus {   
14.     OPEN, CLOSE   
15. } ValveSoleStatus;   
16.    
17. // Solenoid valve struct   
18. typedef struct valveSole {   
19.     GPIO_TypeDef* GPIOx;   
20.     uint16_t pin_0;   
21.     ValveSoleStatus status;   
22. } ValveSole;   
23.    
24. // Solenoid valve high level functions   
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25. void valveSoleInit (ValveSole *valve, GPIO_TypeDef* GPIOx, uint16_t pin_0); // Initialize 
with 1 GPIO pin   

26. void valveSoleOpen (ValveSole *valve); // Open the valve   
27. void valveSoleClose (ValveSole *valve);// Close the valve   
28.    
29.    
30. //========== Motorized Valve. Two-pin control   
31.    
32. typedef enum valveMotorStatus {   
33.     OPENED, CLOSED, OPENING, CLOSING   
34. } ValveMotorStatus;   
35.    
36. // Motorized valve struct   
37. typedef struct valveMotor {   
38.     GPIO_TypeDef* GPIOx;   
39.     uint16_t pin_0;   
40.     uint16_t pin_1;   
41.     ValveMotorStatus status;   
42.    
43. } ValveMotor;   
44.    
45. // Motorized valve high level functions   
46. void valveMotorInit (ValveMotor *valve, GPIO_TypeDef* GPIOx, uint16_t pin_0, uint16_t pin_

1);// Initialize with 2 GPIO pins   
47. void valveMotorOpen (ValveMotor *valve); // start opening the valve   
48. void valveMotorClose (ValveMotor *valve); //  start closing the valve   
49. void valveMotorHold (ValveMotor *valve); // stop the valve   
50.    
51.    
52. // Valve instances   
53. ValveMotor mvalve1;   
54. ValveSole svalve1;   
55. ValveSole svalve2;   
56. ValveSole svalvee;   
57.    
58. #endif /*VALVE_H_*/   

1. /*SSD1306.h - OLED*/    
2. #ifndef __SSD1306_H__   
3. #define __SSD1306_H__   
4.    
5. #include "stm32l4xx_hal.h"   
6. #include "ssd1306_fonts.h"   
7.    
8. /* I2C config*/   
9. I2C_HandleTypeDef hi2c1;   
10. #define SSD1306_I2C_PORT        hi2c1   
11. #define SSD1306_I2C_ADDR        (0x3C << 1)   
12.  
13. // SSD1306 OLED height in pixels   
14. #define SSD1306_HEIGHT          64   
15. // SSD1306 width in pixels   
16. #define SSD1306_WIDTH           128   
17.    
18. // Enumeration for screen colors   
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19. typedef enum {   
20.     Black = 0x00, // Black color, no pixel   
21.     White = 0x01  // Pixel is set. Color depends on OLED   
22. } SSD1306_COLOR;   
23.    
24. // Struct to store transformations   
25. typedef struct {   
26.     uint16_t CurrentX;   
27.     uint16_t CurrentY;   
28.     uint8_t Inverted;   
29.     uint8_t Initialized;   
30. } SSD1306_t;   
31.    
32. // High-Level functions   
33. void ssd1306_Init(void);   
34. void ssd1306_Fill(SSD1306_COLOR color);   
35. void ssd1306_UpdateScreen(void);   
36. void ssd1306_DrawPixel(uint8_t x, uint8_t y, SSD1306_COLOR color);   
37. char ssd1306_WriteChar(char ch, FontDef Font, SSD1306_COLOR color);   
38. char ssd1306_WriteString(char* str, FontDef Font, SSD1306_COLOR color);   
39. void ssd1306_SetCursor(uint8_t x, uint8_t y);   
40.    
41. // Low-level functions   
42. void ssd1306_Reset(void);   
43. void ssd1306_WriteCommand(uint8_t byte);   
44. void ssd1306_WriteData(uint8_t* buffer, size_t buff_size);   
45.    
46. #endif // __SSD1306_H__   

 

1. /*Xbee.h*/   
2.    
3. #ifndef XBEE_H_   
4. #define XBEE_H_   
5.    
6. #include <stdbool.h>   
7. #include <stdlib.h>   
8. #include <stdio.h>   
9. #include "stm32l4xx_hal.h"   
10. #include "usart.h"   
11. #include "gpio.h"   
12.    
13. #define TRANSMIT_TIMEOUT 200   
14. #define RECEIVE_TIMEOUT 300   
15. #define RECEIVE_BUF_SIZE 10   
16. #define MAX_SLAVE_NUM 3   
17.    
18. // message type   
19. #define SYNC 0   
20. #define NEW_ID 1   
21. #define REG 2   
22. #define DATA 3   
23.    
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24. // command type   
25. #define NO 0 //No action   
26. #define DRAIN 1 //Drain action   
27. #define RECOVER 2 //Recover action   
28. #define END 3 //End action   
29.    
30. // check slave alive period - 10 cycles   
31. #define REPORT_PERIOD 10   
32.    
33. typedef enum {   
34.     START,   
35.     NORMAL,   
36.     DRAINING,   
37.     DRAINED,   
38.     RECOVERING   
39. } XbeeState;   
40.    
41. typedef struct   
42. {   
43.     // UART   
44.     UART_HandleTypeDef *husart1;   
45.     // generic   
46.     char buffer_rx[2];   
47.     int id;   
48.     uint8_t need_action;    // From temp task and xbee task   
49.     uint8_t need_recover;   // From WiFi task   
50.     // master   
51.     uint8_t slave_vector[3];   
52.     uint8_t slave_report_vector[3];   
53.     uint8_t responded_slaves;   
54.     XbeeState state;   
55.     uint8_t report_round;   
56. } Xbee_t;   
57.    
58. extern Xbee_t Xbee;   
59.    
60. // High level functions   
61. void xbee_init(UART_HandleTypeDef *husart, int xbee_id); // initialize master Xbee with id

 and UART port   
62. void send_data(int is_ACK, int need_action); // client xbee send command   
63. void send_sync(int action); // master xbee send command   
64. void send_new_id(int new_id); // master send an id to clents   
65. void send_reg();   
66.    
67.    
68. // Internal functions   
69. bool xbee_send(char b); // send raw data   
70. void Xbee_RxCallBack();   
71.    
72. #endif /* XBEE_H_ */   

1. /*WiFi.h*/   
2.    
3. #ifndef WIFI_H_   
4. #define WIFI_H_   
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5.    
6. #include "FreeRTOS.h"   
7. #include "task.h"   
8. #include "cmsis_os.h"   
9.    
10. #include "stm32l4xx_hal.h"   
11.    
12. #include <stdbool.h>   
13. #include <stdlib.h>   
14. #include <stdio.h>   
15. #include <string.h>   
16. #include <stdarg.h>   
17.    
18. // WiFi status   
19. typedef enum{   
20.     SOFTAP,   
21.     STATION   
22. }WiFiMode;   
23.    
24. // WiFi Struct   
25. typedef struct{   
26.     // public variables   
27.     WiFiMode mode; // wifi status   
28.     bool IsNewMessage; // If there is a new message from wifi module   
29.     char receive_state[4]; // Command parsed from a message   
30.     char config_time[6]; // Configuration time parsed from a message   
31.    
32.     // private variables for data transmission   
33.     char rxbuf;   
34.     char messagebuf[15];   
35.     char databuf[15];   
36.     int bufindex;   
37.     int data_lenth;   
38.     UART_HandleTypeDef *husart;   
39. }WiFi;   
40.    
41. // WiFi instance   
42. WiFi wifi;   
43.    
44.    
45. // Wifi high level functions   
46. void wifi_init(UART_HandleTypeDef *husart); // Initialize the instance with a UART port   
47. bool wifi_send_data(int temp, char* status);// Send temperarture and system status to WiFi

 module   
48. bool wifi_get_data(); // Read data from the receive buffer   
49. void wifi_callback(); // UART callback handler   
50.    
51.    
52. // INTERNAL FUNCTIONS   
53. bool wifi_checkmode(); // check the mode of WiFi   
54. bool wifi_message_check(); // check whether there is a new message   
55.    
56. #endif /* WIFI_H_ */   
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Soldered PCB: 

 

Figure 7: Front Side of Soldered PCB 
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Figure 8: Back Side of Soldered PCB 
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Open Source Resources Used: 

 

The following open source code  resources  were used: 

1. C Standard Library was used. This includes: 

• stdio.h 

• stdlib.h 

• string.h 

 

2. STM32 Library was used. This includes: 

• FreeRTOS  

• STM32_HAL 

 

3. Arduino Library was used for the ESP8266 Wi-Fi module. This includes: 

• FS.h 

• PString.h 

• Streaming.h 

• ESP8266WiFi.h 

• DNSServer.h 

• ESP8266WebServer.h 

• ESP8266HTTPClient.h 

 

4. Additional code resources include: 

• Tutorial for hosting a webpage on ESP8266 - 

https://yoursunny.com/t/2017/freewifi/ 

• Source code for SSD1306.h - https://github.com/afiskon/stm32-ssd1306  

 

 

 

 

 

 

 

 

 

https://yoursunny.com/t/2017/freewifi/
https://github.com/afiskon/stm32-ssd1306
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