

Smart Water Pipes EECS 473
Fall 2018

1

Team members: Devesha Tewari, Rahul Gangwani, Chunan Ye, Yutian Chen, Carl Wu

I. Introduction and overview of project

As outdoor temperatures plummet, household pipes can be exposed to extremely cold

conditions. This is experienced commonly by persons who are away from their home for

extended periods during winter time such as in unattended vacation homes. Lower

temperatures can cause the water in the pipes to freeze. This results in an increase in the

pressure in the pipes, which can cause them to burst. The Michigan Committee for Severe

Weather Awareness estimates that a quarter-million homes in Michigan are damaged each

winter due to frozen water pipes, while an eighth-inch crack in a pipe can cause up to 250

gallons of water to leak a day1. This can lead to severe property damage. According to ACE

Home Services, such a water leak can cost anywhere from $5,000- $50,000, plus plumbing costs

to repair the pipes2.

One common workaround to this problem is to keep the house heated sufficiently to prevent

the pipes from being exposed to very low temperatures. The homeowner must manually

monitor this situation by increasing the temperature enough to prevent the pipes from

freezing, but not too high for extended periods, as this becomes energy intensive and

expensive. Another common solution is to drain all the pipes in the house. However, this

approach is not a trivial task and requires professional plumbers to participate.

There are currently limited viable commercial solutions to easily monitor the temperature of

the water pipes. However, even with these solutions, the user is only informed of the

temperature and must then either manually increase the temperature of the home or manually

drain the pipes. Thus, we developed a novel commercial product to solve this issue, while

addressing the need to drain the pipes.

According to “The Freezing and Blocking of Water Pipes”, the water in pipes are subjected to

the risk of freezing when the temperature is between -4°C and -6°C. Also, flow rate could be

used as a gauge for the risk of pipes bursting, however there is no accurate quantitative

measure for this approach3. Thus, our project stemmed from their findings, where we

implemented a temperature sensor at the specified threshold.

Our solution actively monitors the pipe temperature, reporting such to the user via a web

application interface. If the pipes are at risk of freezing, the system will automatically drain the

Smart Water Pipes EECS 473
Fall 2018

2

pipes. The drainage will occur in the configured time setup by the user, which was a default to 5

seconds. The pipe status to indicate whether the pipes are operating normally or is drained is

displayed on the packaged system and on the web application. The user can also command the

system to drain or refill the pipes. The web application interface also plots the temperature

recordings of the pipes to the user. Our solution overall provides an automatic and guaranteed

solution that the pipes will never burst.

For the design expo, we constructed a pipe system to model that of a household pipe system.

We demonstrated all functionality of our system. Since we could not achieve the situation

where the pipes were at risk of freezing, we simulated such by placing the temperature sensor

in ice water and reducing the threshold to 6°C to show the drainage process. We further

showed that the pipes can be refilled by the user command on the web interface. The

temperature and pipe status were also shown updating on the displays of the packaged product

and the web application. We also showed that our system plots the temperature of the pipes.

Finally, we showed that the Wi-Fi of our system has implemented SoftAP, in which the user can

enter their SSID and password to connect the system to the internet on startup.

II. Description of project

The eventual goal of this project is to present a solution to the problem of water freezing in the

plumbing system in houses during extremely cold days. More specifically, we aim to develop a

commercial automatic pipe drainage system which can be relatively easy to install and work

with existing pipe structures at the user’s house.

The system combines sensors and traditional methodology for pipe drainage. The system

involves several devices that will be installed on some specific segments of the pipes across the

house. Every device serves not only as a sensor node that can measure local temperature and

evaluate freezing risk, but also as the controller to some local mechanical components (valves)

that will remotely collaborate to drain the pipes.

Traditional plumbing has already developed a methodology to drain a pipe. The process can be

summarized in the following steps:

1. Close the main source of incoming water

2. Open all the terminals along the pipes (e.g. taps, faucets…)

3. Connect an air compressor to the faucet right next to the main entrance of water

Smart Water Pipes EECS 473
Fall 2018

3

4. Pump air into the network and push water out

Realizing that the whole process is a sequence of simple mechanical operations happening on

different locations of the pipes, we believe that we can use an embedded system to do it

instead. This would have been typically done by a plumber. However, it is inconvenient to

request plumbing services every time the user would like to drain his pipes.

Existing research has shown that water in the pipes are subject to the risk of freezing between

-4°C and -6°C3. Given the isolation of water in the plumbing system, temperature and flow rate

are the most important factors that determines the risk of freezing. Unfortunately, the research

points out that there is no good quantitative analysis on how flow rate affect water freezing.

Given the supporting evidence from the existing plumbing practice and academic research on

freezing risk evaluation, we are confident that our system can achieve our goal if we can

coordinate the sensors and the mechanical components to work successfully.

In order to make the product marketable, the product should be relatively small and light

enough to be installed onto the pipe structure. Our packaged product was of 16cm x 10cm x 8.5

cm and weighed 0.63lbs. This was small enough to be secured onto to the pipes. However, this

could have been reduced if there was time to make a second optimized version of the PCB.

Another design constraint is that the cost of the system should be low enough for the user to

be persuaded to purchase this product, since there would be an unavoidable plumbing cost

incurred as well. Our product costs $297.96. This includes the price of all expensive components

such as the valves and the air compressor. While this cost is quite high for such a system, it can

be justified since it is still much less than the incurred costs of ruptured water pipes ($5,000-

$50,0002). Next, the system should be accurate and robust, to ensure that the pipes are only

drained if they are at risk of bursting. Our system has a resolution of 0.5°C, which is sufficient

for this application. Additionally, our state machine used ensures that the system will always

operate in a known safe state, thus preventing it from malfunctioning. Also, our system has a

much faster reaction time than the rate that temperature would change. This ensures that the

risk situation would be detected and dealt with before the pipe ruptures. Next, our solution

should be user-friendly as it targets typical homeowners. This was achieved by designing a

simple web application interface displaying only the necessary information and commands for

the user. The packaged system also displayed such information. Finally, from a project point of

Smart Water Pipes EECS 473
Fall 2018

4

view, we were provided a budget of $1000 and time frame of roughly 11 weeks. Our project

was successfully completed within this time and kept within the budget.

Before delving into the functional requirements of our system, it needs to satisfy the following

baseline requirements:

1. It must not interfere with the normal water flow in common case

2. It must not add any unsafe material to the water

3. It must not cause leakage in common case

4. It doesn’t affect the structure of existing pipes

Given that our system is supposed to work in the wall, our system has two constraints:

1. It must regularly report its status to the user

2. It must interact with user via remote control

In order to make our system marketable, we want it to have the following properties:

1. It can be implemented with a small cost for the whole system

2. It can be easily installed

3. It can be configured to adapt to house with different sizes and pipe structures

There are also some important legal constraints:

1. The modification of the plumbing system must meet the Uniform Plumbing Code

2. The system must be installed and maintained by plumbers with the license

However, due to the limitation of the scope of this project. We cannot spend effort in

addressing with these legal constraints.

Based on these constraints, we have categorized and defined a set of functional criterions that

our system is supposed to achieve.

Smart Water Pipes EECS 473
Fall 2018

5

Table 1: Design Requirements

Category Design Criteria Importance
Will/

Expect/
Stretch

Achieved? Comment

Sy
st

e
m

Drainage is triggered when any temperature
is less than -4°C.

Fundamental Will ✅ -

The system never enters an unsafe state. Fundamental Will ✅ -

Valves does not cause any leakage Fundamental Will
✅

(80%)

Caused by bad valve
quality

Drainage takes a constant time, which can
be configured by the user through the

phone.
Important Will ✅ -

There is a defined safe emergency mode
when power and/or Wi-Fi is off.

Important Will ✅

Redesigned so this
was no longer

necessary.

W
eb

 A
p

p
lic

at
io

n

Updates will take place every 10s when the
user connects to web server on the mobile

device.
Important Expect ✅ -

Push notifications occur just before pipes are
drained.

Optional Stretch

This was not
prioritized as a stretch

goal

Interface the app and the web server with a
Nest Learning Thermostat

Optional Stretch
Did not obtain Nest

Thermostat

Record and plot temperature Optional Stretch ✅ Added during project

C
o

m
m

u
n

ic
at

io
n

 Main PCB sends data to web server when at
a 10s interval when user is online or if the

user is at risk.
Fundamental Will ✅

Our system streams
data to web server

Communication occurs between main and
node PCBs at 5s intervals.

Important Expect ✅ -

The Wi-Fi can be easily configured. Important Stretch ✅ -

Smart Water Pipes EECS 473
Fall 2018

6

The following diagram is an overview of the architecture of our system’s circuit.

Figure 1: System Architecture

Our system involves more than one devices. One of them serves as the unique master device

and all the other ones are node devices. Typically, there should be one node device for ever

floor of the house. Although master and node devices share the same circuit and PCB for

simplicity, they only use a subset of all the peripherals on the board.

The master device controls one motorized valve at the main water source where water enters

the house’s pipes at the basement. It also controls an air compressor through a power relay

module which turns on the air compressor given an active high signal, and a normally off

solenoid valve connecting the air compressor to the pipe.

Each node device controls two normally off solenoid valve at the terminal of pipes on each

floor.

Smart Water Pipes EECS 473
Fall 2018

7

Figure 2 below shows how the master device (main PCB) and the node device is installed on an

existing pipe system.

Figure 2: System Installation Layout

All the mechanical components collaborate during the drainage process, which is summarized

in figure 3.

Figure 3: Drainage Process

Smart Water Pipes EECS 473
Fall 2018

8

A recover process that allows the system to recover the pipes to its normal state to start supply

water is very similar to the drainage process.

A temperature sensor present on each device, collects temperature data across the locations

where the devices are installed. All the temperature data are sent to the master device to

evaluate the risk of freezing.

Device to device communication is handled by XBee modules. Additionally, the master device

has a Wi-Fi module to connect to an external web server to indicate the state of the pipe

system. It also allows the user to monitor the temperature and to it monitors to manually issue

commands through the web application interface. We also gave the user the ability to configure

the time taken for the pipes to drain. This can be initially setup and stored for all further

drainages, or the user can also change this at any time on the web application. Furthermore,

the user can view the history of the temperature of the pipes. This is shown in figure 4 below.

Figure 4: Web Application Interface

Smart Water Pipes EECS 473
Fall 2018

9

In order to provide a complete and simple solution, we also allow the user to configure the Wi-

Fi SSID and password. This is done using the SoftAP mode of our Wi-Fi module. On startup of

the system, the user will enter his Wi-Fi credentials in the interface shown in figure 5.

Figure 5: Wi-Fi Configuration Interface

Every device also includes an OLED display which displays the current status of the system and

local temperature measurement. An LED is added to each device as indicator of device to

device communication (e.g. LED on means the device is “seeing” others). These peripherals

provide necessary information for the user to understand what the system is doing. A reset

button is placed on each board to restart the program on the board. After packaging our system

in the box, only the OLED, LED, reset button and some holes for wires (for the mechanical

components) are exposed to the user, as shown in figure 7 below.

Figure 6: Packaged Product (Master Node)

Smart Water Pipes EECS 473
Fall 2018

10

III. Milestones, schedule, and budget

Milestones:

Our group successfully completed and demonstrated where necessary, the initial milestones.

These are listed below.

Milestone 1: 10/18/2018

● Show temperature sensor data can be displayed with development board

● Valves can be controlled individually with development board

● Establish multi-node XBee communication

● Show rough draft schematic of PCBs

Milestone 2: 11/08/2018

App:

• Show the pipe status and temperature on the web app

• Show the current configuration on the web app

• Allow controls for user to change configurations on web server

System:

• Show overall pipe drainage process through dev board

• Respond to power outage and Wi-Fi outage on dev board

• Display status on LCD with dev board

Show final layout of PCBs:

• Show design of LED blink when micro has code

• Show all sensors and components layout together on PCB

• Show design of power circuits

Packaging:

• Draft of packaging for Design Expo

• Pipe structure created for demo

Schedule:

Our group was able to complete all items in our schedule by the design expo deadline.

However, we did have a few minor issues along the way. Initially, we took longer than expected

to select and receive our microprocessor. After such, there was a delay in getting our

development environment running. This resulted in a delaying of our first major task, which

was prototyping all peripherals. However, after setup, we were able to complete this step

faster than planned and stuck to our schedule. Communication through XBee and Wi-Fi posed

the most issues and took longer than expected. Soldering also took longer than planned, mostly

Smart Water Pipes EECS 473
Fall 2018

11

due to issues faced with soldering the microprocessor. Soldering and communication tasks

were done concurrently and were achieved eventually a bit delayed on schedule. The final task

was system integration, final testing and improvements. We initially scheduled one and a half

weeks for this. This was started a bit later due to the previous delays. However, was completed

within the timeframe.

Budget:

Our group spend a total of $954.41, which was within our $1000 budget. Our proposal

budgeted $661.42, which did not include some components such as the microcontroller and

development board (which were not confirmed at that time) as well as passives and

miscellaneous required items for the demo. Due to minor project changes, we had to also make

additional purchases outside of the above, such as two motorized valves and a rechargeable li-

ion battery. The PCB also costed more than initially budgeted. Overall, we were able to stick

within the allocated budget.

Smart Water Pipes EECS 473
Fall 2018

12

IV. Lessons learned

Overall, our system operation went well. Our finite state machine designed was robust and

thus, all our peripherals worked as expected, resulting in smooth system operation.

Our packaging was not as good as we initially planned. This item was not prioritized sufficiently

and thus, we ran into difficulties with this nearing the end of the project. As a result, our final

casing and overall look of our final demo setup, had a lot of room for improvement in our

opinion.

If we could send a short memo back in time to advise our group, we would simply say “Take

more risks”. During our project, we took many precautionary steps. For example, with the PCB

design, our design included components mainly on one side of the board, and included many

additionally pins, in case we needed such. However, this resulted in a larger than necessary

PCB. Similarly, we opted for a safer off the shelf solution for our battery charging system.

However, ideally if we had more time, we could have designed our own.

Our group learned a wide range of technical material. Firstly, since we used a new

microcontroller, we learned about a new development environment. As such, we are confident

that we can now easier setup and use any given microcontroller, provided that the required

documentation is available. Next, we gained a deeper understanding with XBee communication

and Wi-Fi communication. Since our project implemented FreeRTOS, we gained a deeper

understanding managing more tasks, as well as how to develop and maintain a good software

interface. We also gained experience with building the web server and designing and building

the web application. Finally, other important technical skills gained was debugging, due to the

number of small issues faced during implementation. We also gained real-world engineering

skills in the sense that we observed a problem, identified the current environment and issues,

studied the relevant research done and engineered an applicable and efficient solution.

Smart Water Pipes EECS 473
Fall 2018

13

V. Contributions of each member of team

Table 2: Team Contributions

Team Member Contribution Effort

Rahul

Gangwani

Rahul majorly developed and tested the temperature sensor. He

was also solely responsible for the PCB design. He also

participated in unit testing of the peripherals. He also played a

large role in the packaging. Rahul also contributed greatly to the

poster and documentation.

20%

Devesha

Tewari

Devesha majorly developed and tested the OLED display and

worked aided with the temperature sensor, Wi-Fi and web

application. She soldered and tested the node PCB. She also

participated in unit and system testing. She also worked a lot on

the system integration and setup for the design expo. Devesha

also contributed greatly to the poster and documentation.

20%

Chunan Ye Chunan majorly developed and tested the Xbee and aided on the

Wi-Fi. He also played the largest role in the algorithm

development of the system with the team. He also constructed

the mechanical pipe system for demo. He soldered and tested

the main PCB. He also participated in unit and system testing. He

also worked a lot on the system integration and setup for the

design expo.

25%

Yutian Chen Yutian majorly developed and tested the Wi-Fi. He also

developed the web server side and web application interface. He

also participated in unit and system testing. He also worked a lot

on the system integration and setup for the design expo. Yutian

also was in charge of purchasing and managing of the budget.

20%

Carl Wu Carl aided with the development of the temperature sensor. He

also did the packaging design and was responsible for the

printing of the package.

15%

Smart Water Pipes EECS 473
Fall 2018

14

VI. Cost of Manufacture

By using CircuitHub, we were able to generate a quote based on the board and assembly:

Table 3: PCB Assembly Quote

By ordering more boards at a time, we can effectively reduce the cost of the board and

assembly. The reason for these prices are due to the fact that the cost of assembly is

considered, and that the manufacturing process uses a pick and place machine to place

components, so more of the same components are ordered to consider for attrition (parts that

may be damaged by the machine).

The highlighted section of the spreadsheet shows a reasonable starting number of boards that

we will need for our system. This was based on the fact that each household will have at least 4

PCBs (one for the main valve, and 3 for the node valves, one per floor). The total price per

board of ordering 2000 boards with assembly is $59.38, which fits reasonably given the cost of

the prototyped PCB and components without assembly was $20.84.

Smart Water Pipes EECS 473
Fall 2018

15

VII. Parts

Table 4 and table 5 below shows a list of the parts ordered that were either used in the final

design or not included in the final design. These costs do not consider shipping.

Table 4: List of Parts Used in Final Design

Smart Water Pipes EECS 473
Fall 2018

16

Table 5: List of Additional Unused Parts

Table 6 below shows the total cost for the two populated PCBs for the master and node device.

Table 6: List of PCB Components Used

Smart Water Pipes EECS 473
Fall 2018

17

VIII. References and citations

Interface Code:

The main header files written for our project are shown below.

1. /*Temperature.h*/
2. #ifndef TEMPERATURE_H_
3. #define TEMPERATURE_H_
4.
5. #include "stm32l4xx_hal.h"
6.
7. #define ONEWIRE_CMD_SKIPROM 0xCC
8. #define ONEWIRE_CMD_RSCRATCHPAD 0xBE
9. #define ONEWIRE_CMD_WSCRATCHPAD 0x4E
10. #define ONEWIRE_CMD_CPYSCRATCHPAD 0x48
11. #define TEMP_CMD_CONVERTTEMP 0x44 /* Convert temperature */
12.
13. #define HIGH 1
14. #define LOW 0
15.
16. typedef enum Temp_Command
17. {
18. READ_TEMP, SET_RESOLUTION, CONVERT
19. }
20. Command;
21.
22. typedef struct Temp_Struct
23. {
24. GPIO_TypeDef* GPIOx; /*!< GPIOx port to be used for I/O functions */
25. uint16_t GPIO_Pin; /*!< GPIO Pin to be used for I/O functions */
26. }
27. Temperature;
28.
29.
30. /* HIGH LEVEL FUNCTIONS */
31. void initTemp(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, GPIO_TypeDef* port, uint1

6_t data_pin); // Initialize the instance with a GPIO pin
32. float getTemperature(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst); // Read temperatu

re data from the sensor
33. double convertCelsius(double fahrenheit_in); // Convert Fahrenheit to Cenlsius
34. double convertFahrenheit(double celsius_in); // Convert Cenlsius to Fahrenheit
35.
36.
37. /*LOW LEVEL FUNCTIONS */
38.
39. //Setup pin to use OneWire protocol through temp Init
40. void OneWire_Init(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, GPIO_TypeDef* GPIOx,

uint16_t GPIO_Pin_in);
41.
42. //Step 1. Initialization - Send pulse and wait for response, if good move on.
43. uint8_t OneWire_Reset(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);
44.
45. //Step 2. ROM Command -> Skip ROM

Smart Water Pipes EECS 473
Fall 2018

18

46. void Temperature_SendCommand(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, Command cm
d);

47.
48. //Set R0 and R1 to 0 for 9 bit resolution
49. uint8_t Temperature_SetResolution(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, const

 uint8_t resolution);
50.
51. ////Write Logic
52. void OneWire_WriteByte(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, uint8_t byte);
53. void OneWire_WriteBit(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst, uint8_t bit);
54.
55. ////Read Logic
56. uint8_t OneWire_ReadBit(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);
57. uint8_t OneWire_ReadByte(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);
58.
59. //Temperature convert and read result logic
60. void Temperature_Convert(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst);
61. float Temperature_Read(Temperature* TempPin, TIM_HandleTypeDef* Tim_Inst); //Skip ROM sta

rt temperature conversion
62.
63. //Invalid command was entered
64. void Invalid_Cmd();
65.
66. //OneWire Pin Manipulations
67. void SET_ONEWIRE_LOW(Temperature* TempPin);
68. void SET_ONEWIRE_AS_OUTPUT(Temperature* TempPin);
69. void SET_ONEWIRE_AS_INPUT(Temperature* TempPin);
70. void SET_ONEWIRE_DELAY(TIM_HandleTypeDef* Tim_Inst, uint32_t time_us);
71. #endif /* TEMPERATURE_H_ */

1. /*Valve.h*/
2.
3. #ifndef VALVE_H_
4. #define VALVE_H_
5.
6. #include "stm32l4xx_hal.h"
7. #define HIGH 1
8. #define LOW 0
9.
10. //========= Solenoid valve. One-pin control
11.
12. // Solenoid valve status
13. typedef enum valveSoleStatus {
14. OPEN, CLOSE
15. } ValveSoleStatus;
16.
17. // Solenoid valve struct
18. typedef struct valveSole {
19. GPIO_TypeDef* GPIOx;
20. uint16_t pin_0;
21. ValveSoleStatus status;
22. } ValveSole;
23.
24. // Solenoid valve high level functions

Smart Water Pipes EECS 473
Fall 2018

19

25. void valveSoleInit (ValveSole *valve, GPIO_TypeDef* GPIOx, uint16_t pin_0); // Initialize
with 1 GPIO pin

26. void valveSoleOpen (ValveSole *valve); // Open the valve
27. void valveSoleClose (ValveSole *valve);// Close the valve
28.
29.
30. //========== Motorized Valve. Two-pin control
31.
32. typedef enum valveMotorStatus {
33. OPENED, CLOSED, OPENING, CLOSING
34. } ValveMotorStatus;
35.
36. // Motorized valve struct
37. typedef struct valveMotor {
38. GPIO_TypeDef* GPIOx;
39. uint16_t pin_0;
40. uint16_t pin_1;
41. ValveMotorStatus status;
42.
43. } ValveMotor;
44.
45. // Motorized valve high level functions
46. void valveMotorInit (ValveMotor *valve, GPIO_TypeDef* GPIOx, uint16_t pin_0, uint16_t pin_

1);// Initialize with 2 GPIO pins
47. void valveMotorOpen (ValveMotor *valve); // start opening the valve
48. void valveMotorClose (ValveMotor *valve); // start closing the valve
49. void valveMotorHold (ValveMotor *valve); // stop the valve
50.
51.
52. // Valve instances
53. ValveMotor mvalve1;
54. ValveSole svalve1;
55. ValveSole svalve2;
56. ValveSole svalvee;
57.
58. #endif /*VALVE_H_*/

1. /*SSD1306.h - OLED*/
2. #ifndef __SSD1306_H__
3. #define __SSD1306_H__
4.
5. #include "stm32l4xx_hal.h"
6. #include "ssd1306_fonts.h"
7.
8. /* I2C config*/
9. I2C_HandleTypeDef hi2c1;
10. #define SSD1306_I2C_PORT hi2c1
11. #define SSD1306_I2C_ADDR (0x3C << 1)
12.
13. // SSD1306 OLED height in pixels
14. #define SSD1306_HEIGHT 64
15. // SSD1306 width in pixels
16. #define SSD1306_WIDTH 128
17.
18. // Enumeration for screen colors

Smart Water Pipes EECS 473
Fall 2018

20

19. typedef enum {
20. Black = 0x00, // Black color, no pixel
21. White = 0x01 // Pixel is set. Color depends on OLED
22. } SSD1306_COLOR;
23.
24. // Struct to store transformations
25. typedef struct {
26. uint16_t CurrentX;
27. uint16_t CurrentY;
28. uint8_t Inverted;
29. uint8_t Initialized;
30. } SSD1306_t;
31.
32. // High-Level functions
33. void ssd1306_Init(void);
34. void ssd1306_Fill(SSD1306_COLOR color);
35. void ssd1306_UpdateScreen(void);
36. void ssd1306_DrawPixel(uint8_t x, uint8_t y, SSD1306_COLOR color);
37. char ssd1306_WriteChar(char ch, FontDef Font, SSD1306_COLOR color);
38. char ssd1306_WriteString(char* str, FontDef Font, SSD1306_COLOR color);
39. void ssd1306_SetCursor(uint8_t x, uint8_t y);
40.
41. // Low-level functions
42. void ssd1306_Reset(void);
43. void ssd1306_WriteCommand(uint8_t byte);
44. void ssd1306_WriteData(uint8_t* buffer, size_t buff_size);
45.
46. #endif // __SSD1306_H__

1. /*Xbee.h*/
2.
3. #ifndef XBEE_H_
4. #define XBEE_H_
5.
6. #include <stdbool.h>
7. #include <stdlib.h>
8. #include <stdio.h>
9. #include "stm32l4xx_hal.h"
10. #include "usart.h"
11. #include "gpio.h"
12.
13. #define TRANSMIT_TIMEOUT 200
14. #define RECEIVE_TIMEOUT 300
15. #define RECEIVE_BUF_SIZE 10
16. #define MAX_SLAVE_NUM 3
17.
18. // message type
19. #define SYNC 0
20. #define NEW_ID 1
21. #define REG 2
22. #define DATA 3
23.

Smart Water Pipes EECS 473
Fall 2018

21

24. // command type
25. #define NO 0 //No action
26. #define DRAIN 1 //Drain action
27. #define RECOVER 2 //Recover action
28. #define END 3 //End action
29.
30. // check slave alive period - 10 cycles
31. #define REPORT_PERIOD 10
32.
33. typedef enum {
34. START,
35. NORMAL,
36. DRAINING,
37. DRAINED,
38. RECOVERING
39. } XbeeState;
40.
41. typedef struct
42. {
43. // UART
44. UART_HandleTypeDef *husart1;
45. // generic
46. char buffer_rx[2];
47. int id;
48. uint8_t need_action; // From temp task and xbee task
49. uint8_t need_recover; // From WiFi task
50. // master
51. uint8_t slave_vector[3];
52. uint8_t slave_report_vector[3];
53. uint8_t responded_slaves;
54. XbeeState state;
55. uint8_t report_round;
56. } Xbee_t;
57.
58. extern Xbee_t Xbee;
59.
60. // High level functions
61. void xbee_init(UART_HandleTypeDef *husart, int xbee_id); // initialize master Xbee with id

 and UART port
62. void send_data(int is_ACK, int need_action); // client xbee send command
63. void send_sync(int action); // master xbee send command
64. void send_new_id(int new_id); // master send an id to clents
65. void send_reg();
66.
67.
68. // Internal functions
69. bool xbee_send(char b); // send raw data
70. void Xbee_RxCallBack();
71.
72. #endif /* XBEE_H_ */

1. /*WiFi.h*/
2.
3. #ifndef WIFI_H_
4. #define WIFI_H_

Smart Water Pipes EECS 473
Fall 2018

22

5.
6. #include "FreeRTOS.h"
7. #include "task.h"
8. #include "cmsis_os.h"
9.
10. #include "stm32l4xx_hal.h"
11.
12. #include <stdbool.h>
13. #include <stdlib.h>
14. #include <stdio.h>
15. #include <string.h>
16. #include <stdarg.h>
17.
18. // WiFi status
19. typedef enum{
20. SOFTAP,
21. STATION
22. }WiFiMode;
23.
24. // WiFi Struct
25. typedef struct{
26. // public variables
27. WiFiMode mode; // wifi status
28. bool IsNewMessage; // If there is a new message from wifi module
29. char receive_state[4]; // Command parsed from a message
30. char config_time[6]; // Configuration time parsed from a message
31.
32. // private variables for data transmission
33. char rxbuf;
34. char messagebuf[15];
35. char databuf[15];
36. int bufindex;
37. int data_lenth;
38. UART_HandleTypeDef *husart;
39. }WiFi;
40.
41. // WiFi instance
42. WiFi wifi;
43.
44.
45. // Wifi high level functions
46. void wifi_init(UART_HandleTypeDef *husart); // Initialize the instance with a UART port
47. bool wifi_send_data(int temp, char* status);// Send temperarture and system status to WiFi

 module
48. bool wifi_get_data(); // Read data from the receive buffer
49. void wifi_callback(); // UART callback handler
50.
51.
52. // INTERNAL FUNCTIONS
53. bool wifi_checkmode(); // check the mode of WiFi
54. bool wifi_message_check(); // check whether there is a new message
55.
56. #endif /* WIFI_H_ */

Smart Water Pipes EECS 473
Fall 2018

23

Soldered PCB:

Figure 7: Front Side of Soldered PCB

Smart Water Pipes EECS 473
Fall 2018

24

Figure 8: Back Side of Soldered PCB

Smart Water Pipes EECS 473
Fall 2018

25

Open Source Resources Used:

The following open source code resources were used:

1. C Standard Library was used. This includes:

• stdio.h

• stdlib.h

• string.h

2. STM32 Library was used. This includes:

• FreeRTOS

• STM32_HAL

3. Arduino Library was used for the ESP8266 Wi-Fi module. This includes:

• FS.h

• PString.h

• Streaming.h

• ESP8266WiFi.h

• DNSServer.h

• ESP8266WebServer.h

• ESP8266HTTPClient.h

4. Additional code resources include:

• Tutorial for hosting a webpage on ESP8266 -

https://yoursunny.com/t/2017/freewifi/

• Source code for SSD1306.h - https://github.com/afiskon/stm32-ssd1306

https://yoursunny.com/t/2017/freewifi/
https://github.com/afiskon/stm32-ssd1306

Smart Water Pipes EECS 473
Fall 2018

26

References:

1. MSP Divisions Emergency Management & Homeland Security Winter Emergency

Preparedness. (n.d.). Retrieved from http://www.michigan.gov/msp/0,4643,7-123-

72297_60152_70432-342721--,00.html

2. How Much Does a Burst Pipe Cost? - CostHelper.com. (n.d.). Retrieved from

https://home.costhelper.com/water-leak.html

3. Carey, K. L. (1892, May). The Freezing and Blocking of Water Pipes. Cold Regions Technical

Digest. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a148943.pdf

http://www.michigan.gov/msp/0,4643,7-123-72297_60152_70432-342721--,00.html
http://www.michigan.gov/msp/0,4643,7-123-72297_60152_70432-342721--,00.html
https://home.costhelper.com/water-leak.html

