
Wearable RFID Reader for Tracking Interactions
with Ordinary Objects

Youssef Tobah and Rahul Gangwani

Abstract—RFID tag and reader technology has been well
researched and developed for tracking user interactions with
objects in environments that allow for stationary readers.
Existing models consist of a large reader fixed to the ceiling
or lights of a room, which requires an expensive reader, and
cannot track any objects outside of this single reader’s range.
Thus, we propose a portable, wrist-worn RFID reader that
can seamlessly track user interactions with tagged objects.
The device combines an RFID reader, for identifying nearby
objects, and a piezoelectric sensor for detecting object touches.
We demonstrate the capability to detect and distinguish be-
tween multiple tagged objects that are close to the user’s hand
and recognize when the user has touched each object. Such
a device provides the basis for tracking all interactions with
tagged objects in a relatively low-cost, light-weight manner,
free of the limitations imposed by a stationary reader.

I. INTRODUCTION

With the increasing proliferation of embedded devices in
everyday environments, there are numerous opportunities
to leverage such systems for improving everyday life. One
such improvement lies in allowing for users to track their
interactions with common, everyday objects. For example,
developers of virtual reality (VR) and augmented reality
(AR) applications allow users to visually gain information
about the objects around them.

However, there is currently no way to incorporate inter-
actions with ordinary objects in VR and AR technology
[11]. For VR games or for technicians using AR to obtain
information about the machine they are working on, having
the ability to track object interactions expands the capa-
bilities of these applications. If technicians could track the
interactions with and movements of all their tools, it would
simplify the process of training newer technicians, as their
movements could automatically be compared to and guided
by previously tracked interactions of a veteran at work.
Additionally, such tracking can make it easier to identify
sources of error if a system fails, as all the interactions
with the system leading up to the failure can be traced. VR
games can also be improved by allowing interactions with
real world objects to affect events in the virtual world.

One idea for implementing such a system is to equip
objects with IMUs and sensors for tracing interactions.
However, deploying such sensors to the hundreds of objects
humans interact with daily would quickly become quite
expensive and would make objects bulkier. The same issues
apply to replacing everyday objects with smart objects that
have such sensors built-in. Thus, for this project, we would
like to explore the low-cost solution of applying inexpensive
RFID tags to desired objects and using an RFID reader,
worn on the user’s wrist, to track each object’s movements.

RFID is a long existing technology consisting of RFID
chips, or tags, and an RFID reader. A reader can scan a

chip or tag and identify nearby objects, as each tag has
a unique ID. Recent research has successfully developed
extremely low cost, passive RFID tags, which simply reflect
signals emitted by a reader in order to communicate with
that reader [14]. Since these tags are low cost, there is
potential to widely deploy these tags, attaching them to
hundreds of everyday, otherwise ordinary, objects, and allow
an RFID reader to recognize and track interactions with
such objects [14]. This fits neatly with the above motivation
to immediately turn any object into a trackable smart-object.

However, this research uses a model that requires large-
scale RFID readers to be placed in the ceiling or lights. This
is both expensive and inconvenient for homes or buildings
without easily removable ceiling panels. Additionally, if the
ceiling is high relative to the floor, the reader will have
poor accuracy for localization. Finally, such a system is
limited to indoor use and cannot be easily extended to
outdoor environments. Thus, to overcome the limitations of
the current state-of-the-art [10], [14], [18], for this project,
we present a low-cost, lightweight RFID reader that can be
worn on one’s wrist for detecting object interactions.

The reader will consist of an antenna that can detect
nearby RFID tags and send any collected information to a
microcontroller to identify the unique ID of the sensed tags.
The first goal is to have the reader detect the presence of a
nearby tagged object, essentially acting as an “RFID metal
detector.” At the same time, a passive vibration sensor is
used to detect touch interaction with tagged objects to allow
the system to identify what objects a user is touching. The
RFID components will thus detect what object is closest
to the user’s hand, and the piezoelectric sensor will detect
when the hand touches an object. If multiple objects are
clustered together close to the user’s hand, the system will
directly use the vibration patterns to determine what object
the user is touching.

In the case of direct classification for clustered objects,
we observe that vibration patterns will vary between objects
enough to classify a small number of different objects (2 or
3) based on inputs from the passive vibration sensor. Thus,
we make the assumption that, if the objects are clustered
together, the device will only be used for interaction with a
small number of objects at a time. This still meets the needs
of our use case, as a VR game can allow users to interact
with a limited set of objects, still surpassing the capabilities
of any currently existing VR technology, and technicians
could use this device for their three most commonly used
tools.

Future work can build on this project by using data from
IMUs on board the microcontroller to track interactions
with an object a user is touching. For example, the system



could first detect a user is touching a tagged water bottle.
The IMU data would then measure the movement of the
water bottle while the user is touching it, and machine
learning can be used to analyze the pattern of the IMU
data and gauge whether the user has taken a drink or not.
From here, the system could be extended to track use of a
particular mechanical or medical tool, as mentioned in the
above example use case. Therefore, the device developed
in this project would form the basis of a low-cost wearable
system that could track a user’s interactions with tagged
objects.

The rest of the paper is organized as follows. Section
II gives background on RFID and vibration sensing used
by the system. Section III explains the system design as
a whole as well as the design and algorithms used by
each module. Section IV describes the details of how each
module was implemented, while Section V presents the
results. The limitations of the prototype in its current form
are discussed in Section VI. Finally, Section VII gives an
overview related work on relevant topics and Section VIII
concludes.

II. BACKGROUND

The following section provides background on the two
technologies that form the basis for this project: RFID and
vibration sensing.

A. RFID

Radio Frequency Identification (RFID) is a form of wire-
less communication in which a transponder communicates
with a reader through backscatter modulation [18]. The
transponder consists of an integrated circuit (IC) containing
a processing unit and memory unit as well as a printed
antenna. Since the circuit allows for harvesting energy from
RF signals, the transponder does not need a battery to source
power, and can act as a passive tag.

In backscatter modulation, the reader sends out a 915
MHz carrier wave to all passive tags in the surrounding
environment. The tags harness the energy from the re-
ceived waveform in order to power the IC chip. When
the tags have enough power, they modulate the carrier
wave through a process called impedance matching [19].
With impedance matching, the tags can encode their ID
by switching between two impedances: one that absorbs
the carrier wave, and one that reflects. The reader can then
decode the modulated waveform from each tag to receive
the IDs of all surrounding objects.

The benefit of RFID communication comes from the
passive tags. The tags act as ”stickers” and can easily be
placed on common household objects, as shown in Figure
1. Tags are also low in cost, size and weight [23]. However,
the drawback of RFID comes from the readers, which
are high-cost and consume much power. Frii’s Equation,
rearranged in terms of received power:

PR = PT − 20log(
4πd

λ
) +GR +GT − LP (1)

Fig. 1: RFID tag on an object.

shows that the received power is proportional to the trans-
mitted power and distance [20]. The wave transmitted from
the reader is the same wave that is reflected from the
tag. This means that in order for the reader to decode the
modulated waveform, enough power must be transmitted
to cover the distance to the tag and back. Readers are also
integrated with an anti-collision protocol in order to decode
multiple tags at the same time [10]. This means that readers
must be robust and powerful enough to communicate with
multiple tagged objects, which leads to overall higher cost.

B. Vibration Sensing

Piezoelectric sensors are sensors that induce an electric
charge in the presence of an external force. These sensors
have non-centrosymmetric crystals that respond to vibra-
tions at a range of 1 Hz to several MHz [22]. In this
way, piezoelectric sensors can be used to detect vibrations,
either by touching the sensor or touching an object near the
sensor, causing vibrations to propogate through the surface
the sensor is resting on.

Vibsense [15] took advantage of vibration sensing to
develop a system that identifies and localizes touch events
based on the vibrations they cause. The paper is able to
detect and identify objects via vibrations using the following
steps:

1) Receive and filter vibration signals from high fre-
quency noise

2) Convert signals to the frequency domain (FFT)
3) Obtain Power Spectral Density (quantity of power at

each frequency)
4) Use PSD to classify presence of an object

However, as noted by the paper, since VibSense directly
classifies objects based on their vibrations, it can only
classify a limited number of objects. Furthermore, VibSense
simply tells a user what objects are resting on a table by
causing continuous vibrations on that table using a motor.
It cannot be used to indicate what object a user has directly
touched.
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Fig. 2: System block diagram.

III. DESIGN OVERVIEW

The proposed system combines RFID detection and vi-
bration sensing to detect what object a user is touching.
A diagram for the system is shown in Figure 2. On the
right side of the diagram is the RFID antenna, which emits
a signal to detect what objects are near the user’s hand.
RFID tags emit signals back to the antenna, and these
signals are passed to a decoder which extracts the IDs of
detected objects and sends them to a microcontroller. The
piezoelectric sensor, shown on the left side, simultaneously
gathers vibration data. The data is filtered and passed to
the microcontroller for classifying whether the vibrations as
object-touch or non-object-touch. Thus, RFID shows which
objects are nearby and vibration sensing shows whether
a user is touching an object; all together, the system can
identify when a user touches and object and what object he
or she is touching.

A. Identifying Nearby Objects

For this system, the role of RFID is to identify what
object is closest to the user’s hand. Localization via RFID
is currently an open problem [13], [16], as past research
attempted to track exact positions of tagged objects with
results too inaccuate to be used for tracking the precise
locations of individual objects. Additionally, such localiza-
tion requires solving complex issues such as calculating the
angle of arrival of a signal and overcoming phase wrapping.
We therefore, instead devise a simpler method for detecting
the nearest tagged object.

We begin by outputting a signal from the antenna at
constant power. The radiation pattern of this signal depends
on the nature of the antenna, and we assume this radiation
is roughly the shape of a sphere. If multiple objects are
detected, the signal’s power is reduced, reducing the signal’s
range and the size of the sphere of radiation. The signal
is reduced until only a single object is detected, showing
which object is closest to the antenna. The device continues
to reduce the power until it is at the minimum power
possible such that the object is still within range. This
minimum power level thus roughly shows how far the
object is from the user’s hand. If the object is within

”touching distance” the microcontroller is alerted and waits
for a vibration signal to determine if the user is touching
the nearby object. The touching distance threshold can be
calibrated for each object upon first using the device.

Fig. 3: RF range changing to detect only a single object,
but decreasing range by too much.

Algorithm 1: RFID Range Variation

Set range to initial value;
Set RANGECHANGE to initial value;
if no objects detected then

state = 0;
end
if single object detected then

state = 1;
end
if more than one object detected then

state = 2;
end
if state changed or state == 1 then

RANGECHANGE = initial value;
else

RANGECHANGE = RANGECHANGE * 2;
end
if state == 0 then

range = range - RANGECHANGE;
end
if state == 2 then

range = range + RANGECHANGE;
end

If no objects are within the antenna’s range, the signal’s
power is amplified, expanding the size of the radiation
sphere, until an object is detected. Thus if any tagged
objects are within the antenna’s maximum range, the device
can show the user which object is closest to his or her hand.

The speed at which the antenna can lock-on to the closest
objects depends on the amount the signal increases or
decreases by as it adjusts toward having only the single
closest object within its range. This can be modeled as a
classical controls problem: if the signal changes by a large
amount, it can more quickly approach the desired value,
but is likely to overshoot beyond and acceptable range
and would need to spend time readjusting. For example,
visualized in Figure 3, if object A is 25cm away from
the user’s hand, object B is 30cm away, and the antenna
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outputs at a range of 40cm, both objects will be within
range. The antenna needs to emit signals at smaller ranges
until it detects only one object. If it reduces the range by
1cm each emission, reaching the desired value (to only have
A within range) will be quite slow. However, if it reduces
the range by 20cm, it will overshoot, emitting a signal where
neither object is in range, requiring an adjustment period
of increasing the range.

To find a balance that avoids constant overshooting but
allows for quickly adjusting the range, we maintain states
for object detection as shown in Algorithm 1. One state
represents detecting no objects, a second state represents de-
tecting a single object, and a third state detecting more than
one object. If the signal’s range increases or decreases and
the object remains in the same state, the increase/decrease
amount is doubled added to/subtracted from the signal once
again. This process repeats until the state changes, which
causes the increase/decrease amount to reset to its initial
value.

B. Detecting Touch Events

While RFID tracks what objects are near a user’s hand,
the piezoelectric sensor is used to detect the moment the
user touches a tracked object. When a user touches an ob-
ject, the vibrations propagate through hand and are detected
by a piezoelectric sensor. The analog voltages produced by
the sensor are converted to digital values and stored by the
microcontroller.

To differentiate between vibrations caused by noise and
vibrations caused by touch events, the following techniques
from VibSense [15] are used. First, the data is passed
through a sliding window, and the average value of every
point within the window is taken, using the equation

A(t) =

t+S∑
n=t

a2(n), (2)

where t is the start time of the window, S is the length of the
window in samples, and a(n) is the amplitude of a sample
recorded at time n. If this average amplitude passes a certain
threshold, we save a fixed number of sample points starting
at the beginning of the window and ending at a point that
occurs a fixed number of time units later corresponding to
the length of a touch event in seconds.

The recorded values are then converted to the frequency
domain using the equation

PSDi = 10 log10
abs(FFT (ri))

2

fs × n
, (3)

where n is the number of samples, ri is the signal, fs
is the sampling rate, and FFT() represents a fast Fourier
transform. With this we obtain the power spectral density
(PSD) values of the touch event. This means the amplitude
of every component frequency making up the recorded
touch signal is known. These values are used as features
for a machine learning classifier, where each frequency acts
as a feature. Since it is expected that different types of

touch events will produce signals with unique component
frequencies, this data can be used for classification.

The classifier then uses the extracted features to deter-
mine whether the touch event corresponds to an object
touch or a ”false touch,” which refers to vibration caused by
any actions other than touching an object (e.g. touching the
surface the object is resting on, touching one’s own fingers,
or shaking one’s own hand). Therefore, a binary classifier
can be used to classify between object-touches and false
touches.

This presents a key difference from VibSense, which
directly uses vibrations to classify objects. VibSense needs
a class for every object that can be potetnially touched
and differentiates classes based unique vibration patters
produced by each object, limiting the number of objects
it can potentially classify. Our proposed device, however,
can determine what the object is using RFID and only uses
vibration to determine if the user has touched an object.
Using two broad classes (object and non-object), as opposed
to many narrow classes (one class for each object) allows
for identifying interactions with much larger set of objects
than previous work.

Fig. 4: The wearable device containing the required
sensors.

IV. IMPLEMENTATION

A prototype version of the system was designed in the
form of a box shown in Figure 4 that can be strapped to the
user’s wrist. The box features an antenna for RFID sensing
and a piezoelectric sensor that can be attached externally to
the bottom of the box such that it makes contact with the
user’s skin. The sensors in the box were connected by wire
to a Raspberry Pi. Future work can use components built
into a smartwatch so that touch detection can be performed
with hardware that is more readily available to the user.

To improve the accuracy for the proof of concept, we
place the piezoelectric sensor on the back of the user’s hand,
as the closer the sensor is to the fingers, the stronger the
vibration signals detected by the sensor.

A. RFID

The RFID modules consisted of a Taoglas PC.91 antenna
for emitting and detecting RF signals, and a USBPro
ThingMagic decoder module for extracting the tags’ IDs
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from signals received by the antenna. A python wrapper
for MercuryAPI [1] was used to control the decoder and
antenna.

Single Object Detection To verify this hardware could
accurately detect tags, we wrote a simple program that
allowed the user to input the name of a desired object,
and the system would show if the object was nearby.
Observing that this could be useful for a metal-detector-
like functionality of finding lost objects, we attached the
wristband at the end of a stick and hid a tagged object out
of sight. After inputting the name of the hidden object to the
system, we waved the stick around our surroundings until
the display showed the object was nearby, guiding us to
the object’s location. This demonstrates how the proposed
device could easily be extended into an ”object-detector”
for finding lost items. Since the main focus of the project,
however, was to detect touch interactions, we leave refining
this object-search feature for future work.

Determining the Closest Object In addition to detecting
whether a single given object is nearby, the RFID modules
need to determine what object is closest to the user if mul-
tiple tagged objects lie within range. Thus, we implemented
the range-variation algorithm described in Section III-A. As
a preliminary test, we placed a tagged fork and tagged knife
on a table and alternated between hovering one hand over
the fork and over the knife while wearing the device. The
algorithm was able to accurately control the antenna’s range
to tell whether the user’s hand was closer to the fork or the
knife.

B. Touch Detection

For the touch detection component, we ran the output
of the piezoelectric sensor through an amplifying low-pass
filter built with an OPA350 operation amplifier. A low-pass
filter was used since, according to [15], vibrations produced
by touching ordinary objects should have frequencies larger
than 20kHz. We thus filter out all higher frequency signals
to reduce noise, and the op-amp is used to further boost the
signal to noise ratio.

Since the Raspberry Pi does not have an internal ADC,
a MCP3008 ADC is used to convert the filtered analog
vibration signal to digital values. The Pi communicates with
the ADC using SPI, which is somewhat problematic since
the maximum sampling rate is only 25kHz—less than the
required 40kHz Nyquist sampling rate. However, due to the
nature of the observed signals and the classification, the
undersampling had little impact on the classifiers accuracy,
which is discussed in more detail later within Section IV-B.

Feature Extraction As explained in Section III-B, the
vibration data is passed through a sliding window, which
takes the average of the signal’s amplitude and considers
the signal a touch event if this average passes a certain
threshold. The length of the window is set to 0.2 seconds,
corresponding to the estimated length of a touch event.

Time domain touch events are then converted to the
frequency domain for feature extraction. The amplitudes of
2500 frequency components (over a range of 0 to 25kHz)

Fig. 5: PSD values for an object touch and non-object
touch.

are used to classify a touch event, where each frequency is
a feature. Thus, the classifier is given 2500 features to use
for its classification.

We observed example PSDs for an object touch and false
touch and found noticeable differences in the amplitudes
of each frequency component between the object touch
and false touch. As shown in Figure 5, the large spikes
in amplitude occur at different frequencies depending on
whether the event is an object or false touch, showing that
a classifier should be able to easily distinguish between the
two.

Classification The machine learning algorithm is a binary
classifier that distinguishes touching an object from non-
object touches. To train the classifier, for each touch event,
the PSD values are appended to an Excel spreadsheet.
The last column of the spreadsheet is labeled with the
touch event (”Object” or ”Nothing”). When training, a DIP
Switch is used to toggle between generating labels for
object touches and non-object touches.

Scikit-learn, a machine learning library in Python [17] is
used to generate a model to classify the touch event. The
training set was run through multiple binary classification
algorithms in order to understand which produced the most
accurate model. Each model was validated through k-folds
cross validation. In K-folds cross validation, the dataset is
randomly split k times with a fraction of 1/k used as a test
set [4]. Using Python, this was implemented in these steps:

1) Choose the number of folds, k, to be 10
2) Call train test split to split the dataset 90% train 10%

test
3) Generate a model using the training set, and score the

model by testing on the testing set
4) Append each score until k scores have been generated,

and find the average to determine the accuracy of the
model

After running these steps on multiple models, the al-
gorithm with the highest accuracy was found to be Sup-
port Vector Machine (SVM) with Radial Basis Function
(RBF) kernel. SVM is a supervised learning classifier which
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creates a hyperplane that divides data sets into two sides,
with the dividing line representing the classifier’s decision
boundary. Based on the kernel function used, the hyperplane
will take on a different shape to better distinguish the two
classes [3]. The resulting model is incorporated on the
Raspberry Pi to receive vibration data PSDs and provide
classifications in real time.

The reason why SVM produced the best accuracy com-
pared to the other models is that SVM works best for high
dimensional data (when the number of features exceed the
number of observations) [9]. In our case, we gather the
values of 2500 different frequencies, which means 2500
features, and use roughly one tenth to one fifth as many
observations. This is also shown in another study that
found SVM with RBF kernel works best for vibration-based
classifiers [6].

Undersampling. As previously mentioned, due to the
Pi’s limitations, we are forced to undersample vibration
data, resulting in aliasing. However, since the aliased fre-
quency component is dependent on the value of the true
frequency component, it is still possible to classify based
on aliased data. This will only become a problem if the
aliased value happens to have the same frequency as the
true frequency that is a defining feature for a different class.
We found that even with this aliasing, frequencies produced
by objects belonging to different classes rarely matched, as
shown in Figure 5, causing little impact on accuracy.

V. EVALUATION

A. Experimental Methodology

We first integrated the RFID modules (including the
range-variation algorithm) with vibration sensing modules
(including the binary classifier). Since the communicating
with the RFID reader is relatively slow and could interfere
with the vibration sensing sampling rate, the algorithms for
the two sets of modules were executed in parallel using
the Python thread library. We tested the system under the
following four use cases, and the results are presented in
the following section:

1) Detecting touches of a single object
2) Distinguishing touches of two objects at a set distance

away from each other
3) Detecting touches of a single object on varying sur-

faces
4) Distinguishing clustered objects directly based on

vibrations
Training. For each experiment, we trained the machine

learning algorithm with 100 object touches for each po-
tential object and an equal number of false touches. For
example, when classifying between a cup and a bottle,
the training data consisted of 100 cup touches, 100 bottle
touches, and 200 false touches. The touch events of the first
two sets are labeled as object touches and those of the third
set as false touches.

Detecting touches a single object. In this experiment,
a single tagged object was placed on a hard surface in

front of the user. The user, with the wristband system and
piezoelectric sensor attached, reached for and touched the
object. The Raspberry Pi, connected to a monitor, displayed
when the user’s hand was near and object, when he touched
the object, and showed the name of the object as well. The
user also touched his own hand while close to the object
to verify that the machine learning algorithm correctly
classified the false touches. Figure 6 shows the output when
the observer was interacting with the object (left), and when
the observer was not touching the object (right).

Fig. 6: Single Object Touch: [1] indicates touching object.
[0] indicates touching nothing. NEAR CUP indicates RFID
was in range and detecting only one object.

Distinguishing touches of two object at a distance. In
this experiment, two tagged objects were placed on a hard
surface approximately 18 inches from each other. The user
placed his hand between the two objects, and alternated
between touching one or the other. The user also touched
his own hand and the surface the objects were resting on to
verify correct classification. Figure 7 shows the experiment
and the monitor display when the observer was touching a
tagged hand sanitizer bottle (right), touching a tagged cup
(left), and touching the surface near the cup (middle).

Fig. 7: Two Object Touch: [1] indicates touching object.
[0] indicates touching nothing.

Detecting touches an object on various surfaces. In this
experiment, a single tagged object rests on a hard surface
and is touched by the user. The object is then moved to rest
on a softer material in order to verify that the vibrations
are not affected by the surface material to the point that
it would interfere with the classifiers accuracy. Figure 8
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shows the output correctly identifying a touch on a hard
surface (left), and the output correctly identifying a touch
on a softer surface (right).

Fig. 8: Varying Surface Touch: Softer surface used was a
jacket (right).

Distinguishing two objects close together. One limita-
tion of the range-variation algorithm is that if the objects
are too close together, the range cannot decrease to a value
which allows the antennta to identify only one object.
However, according to VibSense, it’s possible to identify
objects based only on vibrations alone if the objects are
made of different materials. In this experiment, two tagged
objects of different material were placed close together, and
the user alternated between touching one or the other. The
binary classifier was modified in this experiment such that
it classified between touching a cup or bottle rather than
touching an object or not. Figure 9 shows the output when
touching the bottle (left) or cup (right).

Fig. 9: Touching Clustered Objects: [1] indicates touching
cup. [0] indicates touching hand sanitizer

B. Performance Results

Figure 10 shows the accuracies of each scenarios. For
each scenario, two accuracies are reported: the first repre-
senting the accuracy from cross validation, determining the
type of touch (blue), and the second representing accuracy
from integrating RFID and vibration and attempting to
determine both if and object is touched and what object
is touched (red). The accuracies marked red were found by
performing the experiments and determining the amount of

Fig. 10: Accuracy of testing on different scenarios: Blue
columns show validation accuracy and red columns show
experimental accuracy

times the correct output was given. The average experimen-
tal accuracy is approximately 90%.

Single object is the only case for which the experimental
accuracy is higher than the validation accuracy. This is
because, for the case of one object, RFID can very ac-
curately tell if the object is close to the user’s hand. Thus,
if the machine learning classifier ever made a mistake, e.g.
reporting an object touch if there was none, that faulty result
would be thrown away since RFID could identify that the
user’s hand was too far away from the object to possibly
be touching it.

As for the other cases, RFIDs accuracy decreases when
multiple objects are within range. Now there are two possi-
ble sources of error, a machine learning misclassification, or
RFID reporting that a farther object is closer to the user’s
hand. This results in less accuracy than the single-object
case. Note that even though the machine learning alone
provides higher accuracy, it is only because it is simply dis-
tinguishing between object-touches and non-object touches,
while the combined accuracy has the more difficult task of
distinguishing type touch and determining what object is
being touched.

VI. DISCUSSION

The system successfully met the initial goal of identifying
interaction with nearby objects, and even surpassed this
by distinguishing between multiple objects and including
a metal detector feature. However, the prototype built for
this project does have several limitations that we hope to
improve for future work. The following sections discuss
these limitations.

A. Machine Learning

Training While the machine learning algorithm was able
to accurately detect when a user had touched an object,
it required training a model each time the piezoelectric
sensor was placed on a different location on the user’s hand.
Ideally, this system could be used with the sensor at any
location on the user’s hand with minimal calibration. Thus,
future work can consider using a training set that consists
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of touches performed with the piezoelectric sensor placed
at different points of the hand on different users.

Feature Extraction For feature extraction, we use 2500
equally spaced frequencies over a range of 25kHz that make
up the frequency components of touch events. It is possible
that some frequencies are more useful than others for
classifying touch types, and thus future work can consider
more careful ways of determining which frequencies are
useful to reduce the number of frequencies used as features,
decreasing noise and allowing for faster classification, while
maintaining or improving accuracy.

B. Clustered Objects

Since the RFID algorithm assumes that a user will touch
the object closest to his or her hand, the performance is poor
when many objects are clustered together, which is why, for
the case of clustered objects, we opted to classify directly
based on an object’s characteristic vibration, as shown in
Section V-A. However, this has limitations similar to past
work [15], as it requires a class for every object, limiting the
amount of objects that can be practically classified. Future
work can explore using alternate RFID algorithms, or rough
localization of tagged objects, to provide more information
on what object is closer to the user’s fingers. This way, a
classifier only needs to distinguish between object touches
and false touches, expanding the number of objects that can
be classified, as we have done for classifying non-clustered
objects.

C. Many Objects

For a large number of objects, even if the objects were
not tightly packed together, the RFID distance-varying
algorithm has trouble determining which object is closest
to the user’s hand. The main cause of this issue is likely
that the antenna’s radiation pattern is not perfectly spherical,
even though the algorithm assumes otherwise. Thus, future
work can consider trying different antennas to find one
with a radiation pattern that is more symmetrical, or that
is radially polarized, meaning the radiation is focused in a
beam pointing in a particular direction. This would provide
much greater accuracy for locking on to the closest object.

D. IMU Tracking

A key point that would be desirable for future work
would be to incorporate IMU data for detailed object
interaction tracking. While the goal for the original project
was to detect what object a user is touching, the ultimate
goal is to have a device that fully understands how a user
is interacting with tagged objects. To meet this need, light-
weight accelerometers and gyroscopes could be equipped
to the system to track a user’s movement while he or she
is holding an object. This information could then be passed
to a machine learning algorithm to classify how a user is
interacting with the objects, similar to the approach used in
IDSense [14] but tracking user movement via IMUs versus
tracking tagged object movement via RFID.

VII. RELATED WORK

Numerous other works propose methods of identifying
objects and interactions with objects. EMSense [12] utilizes
the fact that different objects emit different electromagnetic
waves. This work implemented off line machine learning
algorithms to classify objects based on the frequencies of
emitted electromagnetic waves. However, this system was
limited to work only with conductive devices, whereas our
system works on any tagged object.

There have also been studies that have used acoustic
sensing via microphones to detect vibrations and classify
touch events [2], [8]. However, these devices required a
microphone to be placed on the interacted object in order
for the microphone to recognize a touch. Our system, on
the other hand, uses passive vibrations, with a sensor to
detect vibrations on the user’s hand, in order to avoid adding
external sensors to the target objects.

There has also been work focused on using either
mounted or portable RFID readers alone to identify tagged
objects [7], [14], [21]. However, these papers rely on touch-
ing or covering the tags themselves to identify touching the
object, which limits the places that can be touched. With
our solution that uses passive vibrations, it is possible to
recognize touches that happen anywhere on the object.

Other works have considered using vibrations and piezo-
electric sensors to classify touch events as well. As previ-
ously discussed, VibSense [15], places piezoelectric sensors
on surfaces and causes constant vibrations to classify what
objects rest on the surface. It cannot be used to tell what
object a user is touching, however, and directly classifies
objects based on their vibrations, reducing the amount
of objects it can accurately classify. Additionally, Taprint
[5], uses vibrations caused by a user tapping the back
of his or her hand to detect key presses on a virtual
keyboard projected from a smartwatch. It can accurately
classify where on the hand the user touches, but cannot
classify interactions beyond this, meaning it is not useful
for identifying interactions with ordinary objects.

VIII. CONCLUSION

With increasing desire to enhance the capabilities of ordi-
nary objects, much research has been dedicated to crafting
new methods of tracking interactions with everyday objects.
In this project, we have presented the first portable RFID
reader that can detect touches of tagged objects, without
requiring the user to touch the tags or use electromagnetic
waves that are not present in most objects. We find that by
combining RFID and vibration sensing, we can detect and
identify object touches with 90% accuracy, and hope that
this will act as the basis for a future device that can fully
track interactions with tagged objects.
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